Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Ground-based instruments offer unique capabilities such as detailed atmospheric, thermodynamic, cloud, and aerosol profiling at a high temporal sampling rate. The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) user facility provides comprehensive datasets from key locations around the globe, facilitating long-term characterization and process-level understanding of clouds, aerosol, and aerosol–cloud interactions. However, as with other ground-based datasets, the fixed (Eulerian) nature of these measurements often introduces a knowledge gap in relating those observations with air-mass hysteresis. Here, we describe ARMTRAJ (https://doi.org/10.5439/2309851, Silber, 2024a; https://doi.org/10.5439/2309849, Silber, 2024b; https://doi.org/10.5439/2309850, Silber, 2024c; https://doi.org/10.5439/2309848, Silber, 2024d), a set of multipurpose trajectory datasets that helps close this gap in ARM deployments. Each dataset targets a different aspect of atmospheric research, including the analysis of surface, planetary boundary layer, distinct liquid-bearing cloud layers, and (primary) cloud decks. Trajectories are calculated using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model informed by the European Centre for Medium-Range Weather Forecasts ERA5 reanalysis dataset at its highest spatial resolution (0.25°) and are initialized using ARM datasets. The trajectory datasets include information about air-mass coordinates and state variables extracted from ERA5 before and after the ARM site overpass. Ensemble runs generated for each model initialization enhance trajectory consistency, while ensemble variability serves as a valuable uncertainty metric for those reported air-mass coordinates and state variables. Following the description of dataset processing and structure, we demonstrate applications of ARMTRAJ to a case study and a few bulk analyses of observations collected during ARM's Eastern Pacific Cloud Aerosol Precipitation Experiment (EPCAPE) field deployment. ARMTRAJ will soon become a near real-time product accompanying new ARM deployments and an augmenting product to ongoing and previous deployments, promoting reaching science goals of research relying on ARM observations.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract One of the most intense air mass transformations on Earth happens when cold air flows from frozen surfaces to much warmer open water in cold-air outbreaks (CAOs), a process captured beautifully in satellite imagery. Despite the ubiquity of the CAO cloud regime over high-latitude oceans, we have a rather poor understanding of its properties, its role in energy and water cycles, and its treatment in weather and climate models. The Cold-Air Outbreaks in the Marine Boundary Layer Experiment (COMBLE) was conducted to better understand this regime and its representation in models. COMBLE aimed to examine the relations between surface fluxes, boundary layer structure, aerosol, cloud, and precipitation properties, and mesoscale circulations in marine CAOs. Processes affecting these properties largely fall in a range of scales where boundary layer processes, convection, and precipitation are tightly coupled, which makes accurate representation of the CAO cloud regime in numerical weather prediction and global climate models most challenging. COMBLE deployed an Atmospheric Radiation Measurement Mobile Facility at a coastal site in northern Scandinavia (69°N), with additional instruments on Bear Island (75°N), from December 2019 to May 2020. CAO conditions were experienced 19% (21%) of the time at the main site (on Bear Island). A comprehensive suite of continuous in situ and remote sensing observations of atmospheric conditions, clouds, precipitation, and aerosol were collected. Because of the clouds’ well-defined origin, their shallow depth, and the broad range of observed temperature and aerosol concentrations, the COMBLE dataset provides a powerful modeling testbed for improving the representation of mixed-phase cloud processes in large-eddy simulations and large-scale models.more » « less
An official website of the United States government
